Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Investigating Catastrophic Overfitting in Fast Adversarial Training: A Self-fitting Perspective (2302.11963v2)

Published 23 Feb 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Although fast adversarial training provides an efficient approach for building robust networks, it may suffer from a serious problem known as catastrophic overfitting (CO), where multi-step robust accuracy suddenly collapses to zero. In this paper, we for the first time decouple single-step adversarial examples into data-information and self-information, which reveals an interesting phenomenon called "self-fitting". Self-fitting, i.e., the network learns the self-information embedded in single-step perturbations, naturally leads to the occurrence of CO. When self-fitting occurs, the network experiences an obvious "channel differentiation" phenomenon that some convolution channels accounting for recognizing self-information become dominant, while others for data-information are suppressed. In this way, the network can only recognize images with sufficient self-information and loses generalization ability to other types of data. Based on self-fitting, we provide new insights into the existing methods to mitigate CO and extend CO to multi-step adversarial training. Our findings reveal a self-learning mechanism in adversarial training and open up new perspectives for suppressing different kinds of information to mitigate CO.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.