Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Approximate Implicitization of Planar Parametric Curves via Weak Gradient Constraints (2302.11767v1)

Published 23 Feb 2023 in cs.GR, cs.CG, and cs.CV

Abstract: Converting a parametric curve into the implicit form, which is called implicitization, has always been a popular but challenging problem in geometric modeling and related applications. However, the existing methods mostly suffer from the problems of maintaining geometric features and choosing a reasonable implicit degree. The present paper has two contributions. We first introduce a new regularization constraint(called the weak gradient constraint) for both polynomial and non-polynomial curves, which efficiently possesses shape preserving. We then propose two adaptive algorithms of approximate implicitization for polynomial and non-polynomial curves respectively, which find the ``optimal'' implicit degree based on the behavior of the weak gradient constraint. More precisely, the idea is gradually increasing the implicit degree, until there is no obvious improvement in the weak gradient loss of the outputs. Experimental results have shown the effectiveness and high quality of our proposed methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.