Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhancing Machine Learning Model Performance with Hyper Parameter Optimization: A Comparative Study (2302.11406v1)

Published 14 Feb 2023 in cs.LG

Abstract: One of the most critical issues in machine learning is the selection of appropriate hyper parameters for training models. Machine learning models may be able to reach the best training performance and may increase the ability to generalize using hyper parameter optimization (HPO) techniques. HPO is a popular topic that artificial intelligence studies have focused on recently and has attracted increasing interest. While the traditional methods developed for HPO include exhaustive search, grid search, random search, and Bayesian optimization; meta-heuristic algorithms are also employed as more advanced methods. Meta-heuristic algorithms search for the solution space where the solutions converge to the best combination to solve a specific problem. These algorithms test various scenarios and evaluate the results to select the best-performing combinations. In this study, classical methods, such as grid, random search and Bayesian optimization, and population-based algorithms, such as genetic algorithms and particle swarm optimization, are discussed in terms of the HPO. The use of related search algorithms is explained together with Python programming codes developed on packages such as Scikit-learn, Sklearn Genetic, and Optuna. The performance of the search algorithms is compared on a sample data set, and according to the results, the particle swarm optimization algorithm has outperformed the other algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube