Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Commonality in Recommender Systems: Evaluating Recommender Systems to Enhance Cultural Citizenship (2302.11360v2)

Published 22 Feb 2023 in cs.IR

Abstract: Recommender systems have become the dominant means of curating cultural content, significantly influencing individual cultural experience. Since recommender systems tend to optimize for personalized user experience, they can overlook impacts on cultural experience in the aggregate. After demonstrating that existing metrics do not center culture, we introduce a new metric, commonality, that measures the degree to which recommendations familiarize a given user population with specified categories of cultural content. We developed commonality through an interdisciplinary dialogue between researchers in computer science and the social sciences and humanities. With reference to principles underpinning public service media systems in democratic societies, we identify universality of address and content diversity in the service of strengthening cultural citizenship as particularly relevant goals for recommender systems delivering cultural content. We develop commonality as a measure of recommender system alignment with the promotion of content toward a shared cultural experience across a population of users. We empirically compare the performance of recommendation algorithms using commonality with existing metrics, demonstrating that commonality captures a novel property of system behavior complementary to existing metrics. Alongside existing fairness and diversity metrics, commonality contributes to a growing body of scholarship developing `public good' rationales for machine learning systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube