Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Advancing Stuttering Detection via Data Augmentation, Class-Balanced Loss and Multi-Contextual Deep Learning (2302.11343v1)

Published 21 Feb 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Stuttering is a neuro-developmental speech impairment characterized by uncontrolled utterances (interjections) and core behaviors (blocks, repetitions, and prolongations), and is caused by the failure of speech sensorimotors. Due to its complex nature, stuttering detection (SD) is a difficult task. If detected at an early stage, it could facilitate speech therapists to observe and rectify the speech patterns of persons who stutter (PWS). The stuttered speech of PWS is usually available in limited amounts and is highly imbalanced. To this end, we address the class imbalance problem in the SD domain via a multibranching (MB) scheme and by weighting the contribution of classes in the overall loss function, resulting in a huge improvement in stuttering classes on the SEP-28k dataset over the baseline (StutterNet). To tackle data scarcity, we investigate the effectiveness of data augmentation on top of a multi-branched training scheme. The augmented training outperforms the MB StutterNet (clean) by a relative margin of 4.18% in macro F1-score (F1). In addition, we propose a multi-contextual (MC) StutterNet, which exploits different contexts of the stuttered speech, resulting in an overall improvement of 4.48% in F 1 over the single context based MB StutterNet. Finally, we have shown that applying data augmentation in the cross-corpora scenario can improve the overall SD performance by a relative margin of 13.23% in F1 over the clean training.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube