Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Focusing On Targets For Improving Weakly Supervised Visual Grounding (2302.11252v1)

Published 22 Feb 2023 in cs.CV

Abstract: Weakly supervised visual grounding aims to predict the region in an image that corresponds to a specific linguistic query, where the mapping between the target object and query is unknown in the training stage. The state-of-the-art method uses a vision language pre-training model to acquire heatmaps from Grad-CAM, which matches every query word with an image region, and uses the combined heatmap to rank the region proposals. In this paper, we propose two simple but efficient methods for improving this approach. First, we propose a target-aware cropping approach to encourage the model to learn both object and scene level semantic representations. Second, we apply dependency parsing to extract words related to the target object, and then put emphasis on these words in the heatmap combination. Our method surpasses the previous SOTA methods on RefCOCO, RefCOCO+, and RefCOCOg by a notable margin.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.