Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MADI: Inter-domain Matching and Intra-domain Discrimination for Cross-domain Speech Recognition (2302.11224v1)

Published 22 Feb 2023 in cs.CL, cs.SD, and eess.AS

Abstract: End-to-end automatic speech recognition (ASR) usually suffers from performance degradation when applied to a new domain due to domain shift. Unsupervised domain adaptation (UDA) aims to improve the performance on the unlabeled target domain by transferring knowledge from the source to the target domain. To improve transferability, existing UDA approaches mainly focus on matching the distributions of the source and target domains globally and/or locally, while ignoring the model discriminability. In this paper, we propose a novel UDA approach for ASR via inter-domain MAtching and intra-domain DIscrimination (MADI), which improves the model transferability by fine-grained inter-domain matching and discriminability by intra-domain contrastive discrimination simultaneously. Evaluations on the Libri-Adapt dataset demonstrate the effectiveness of our approach. MADI reduces the relative word error rate (WER) on cross-device and cross-environment ASR by 17.7% and 22.8%, respectively.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.