Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Que2Engage: Embedding-based Retrieval for Relevant and Engaging Products at Facebook Marketplace (2302.11052v1)

Published 21 Feb 2023 in cs.IR, cs.AI, and cs.LG

Abstract: Embedding-based Retrieval (EBR) in e-commerce search is a powerful search retrieval technique to address semantic matches between search queries and products. However, commercial search engines like Facebook Marketplace Search are complex multi-stage systems optimized for multiple business objectives. At Facebook Marketplace, search retrieval focuses on matching search queries with relevant products, while search ranking puts more emphasis on contextual signals to up-rank the more engaging products. As a result, the end-to-end searcher experience is a function of both relevance and engagement, and the interaction between different stages of the system. This presents challenges to EBR systems in order to optimize for better searcher experiences. In this paper we presents Que2Engage, a search EBR system built towards bridging the gap between retrieval and ranking for end-to-end optimizations. Que2Engage takes a multimodal & multitask approach to infuse contextual information into the retrieval stage and to balance different business objectives. We show the effectiveness of our approach via a multitask evaluation framework and thorough baseline comparisons and ablation studies. Que2Engage is deployed on Facebook Marketplace Search and shows significant improvements in searcher engagement in two weeks of A/B testing.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube