Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scientific Computing with Diffractive Optical Neural Networks (2302.10905v1)

Published 12 Feb 2023 in cs.LG, cs.ET, and physics.optics

Abstract: Diffractive optical neural networks (DONNs) have been emerging as a high-throughput and energy-efficient hardware platform to perform all-optical ML in machine vision systems. However, the current demonstrated applications of DONNs are largely straightforward image classification tasks, which undermines the prospect of developing and utilizing such hardware for other ML applications. Here, we numerically and experimentally demonstrate the deployment of an all-optical reconfigurable DONNs system for scientific computing, including guiding two-dimensional quantum material synthesis, predicting the properties of nanomaterials and small molecular cancer drugs, predicting the device response of nanopatterned integrated photonic power splitters, and the dynamic stabilization of an inverted pendulum with reinforcement learning. Despite a large variety of input data structures, we develop a universal feature engineering approach to convert categorical input features to the images that can be processed in the DONNs system. Our results open up new opportunities of employing DONNs systems for a broad range of ML applications.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.