Emergent Mind

Abstract

We develop data-driven reinforcement learning (RL) control designs for input-affine nonlinear systems. We use Carleman linearization to express the state-space representation of the nonlinear dynamical model in the Carleman space, and develop a real-time algorithm that can learn nonlinear state-feedback controllers using state and input measurements in the infinite-dimensional Carleman space. Thereafter, we study the practicality of having a finite-order truncation of the control signal, followed by its closed-loop stability analysis. Finally, we develop two additional designs that can learn structured as well as sparse representations of the RL-based nonlinear controller, and provide theoretical conditions for ensuring their closed-loop stability. We present numerical examples to show how our proposed method generates closed-loop responses that are close to the optimal performance of the nonlinear plant. We also compare our designs to other data-driven nonlinear RL control methods such as those based on neural networks, and illustrate their relative advantages and drawbacks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.