Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator (2302.10806v1)

Published 21 Feb 2023 in cs.AR

Abstract: Deep neural networks (DNN) have become significant applications in both cloud-server and edge devices. Meanwhile, the growing number of DNNs on those platforms raises the need to execute multiple DNNs on the same device. This paper proposes a dynamic partitioning algorithm to perform concurrent processing of multiple DNNs on a systolic-array-based accelerator. Sharing an accelerator's storage and processing resources across multiple DNNs increases resource utilization and reduces computation time and energy consumption. To this end, we propose a partitioned weight stationary dataflow with a minor modification in the logic of the processing element. We evaluate the energy consumption and computation time with both heavy and light workloads. Simulation results show a 35% and 62% improvement in energy consumption and 56% and 44% in computation time under heavy and light workloads, respectively, compared with single tenancy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.