Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Novel Noise Injection-based Training Scheme for Better Model Robustness (2302.10802v2)

Published 17 Feb 2023 in cs.LG

Abstract: Noise injection-based method has been shown to be able to improve the robustness of artificial neural networks in previous work. In this work, we propose a novel noise injection-based training scheme for better model robustness. Specifically, we first develop a likelihood ratio method to estimate the gradient with respect to both synaptic weights and noise levels for stochastic gradient descent training. Then, we design an approximation for the vanilla noise injection-based training method to reduce memory and improve computational efficiency. Next, we apply our proposed scheme to spiking neural networks and evaluate the performance of classification accuracy and robustness on MNIST and Fashion-MNIST datasets. Experiment results show that our proposed method achieves a much better performance on adversarial robustness and slightly better performance on original accuracy, compared with the conventional gradient-based training method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.