Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Utilizing Domain Knowledge: Robust Machine Learning for Building Energy Prediction with Small, Inconsistent Datasets (2302.10784v2)

Published 23 Jan 2023 in cs.LG

Abstract: The demand for a huge amount of data for ML applications is currently a bottleneck in an empirically dominated field. We propose a method to combine prior knowledge with data-driven methods to significantly reduce their data dependency. In this study, component-based machine learning (CBML) as the knowledge-encoded data-driven method is examined in the context of energy-efficient building engineering. It encodes the abstraction of building structural knowledge as semantic information in the model organization. We design a case experiment to understand the efficacy of knowledge-encoded ML in sparse data input (1% - 0.0125% sampling rate). The result reveals its three advanced features compared with pure ML methods: 1. Significant improvement in the robustness of ML to extremely small-size and inconsistent datasets; 2. Efficient data utilization from different entities' record collections; 3. Characteristics of accepting incomplete data with high interpretability and reduced training time. All these features provide a promising path to alleviating the deployment bottleneck of data-intensive methods and contribute to efficient real-world data usage. Moreover, four necessary prerequisites are summarized in this study that ensures the target scenario benefits by combining prior knowledge and ML generalization.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube