Emergent Mind

Abstract

The demand for a huge amount of data for ML applications is currently a bottleneck in an empirically dominated field. We propose a method to combine prior knowledge with data-driven methods to significantly reduce their data dependency. In this study, component-based machine learning (CBML) as the knowledge-encoded data-driven method is examined in the context of energy-efficient building engineering. It encodes the abstraction of building structural knowledge as semantic information in the model organization. We design a case experiment to understand the efficacy of knowledge-encoded ML in sparse data input (1% - 0.0125% sampling rate). The result reveals its three advanced features compared with pure ML methods: 1. Significant improvement in the robustness of ML to extremely small-size and inconsistent datasets; 2. Efficient data utilization from different entities' record collections; 3. Characteristics of accepting incomplete data with high interpretability and reduced training time. All these features provide a promising path to alleviating the deployment bottleneck of data-intensive methods and contribute to efficient real-world data usage. Moreover, four necessary prerequisites are summarized in this study that ensures the target scenario benefits by combining prior knowledge and ML generalization.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.