Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Local Norms in Exp-concave Statistical Learning (2302.10726v2)

Published 21 Feb 2023 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We consider the problem of stochastic convex optimization with exp-concave losses using Empirical Risk Minimization in a convex class. Answering a question raised in several prior works, we provide a $O( d / n + \log( 1 / \delta) / n )$ excess risk bound valid for a wide class of bounded exp-concave losses, where $d$ is the dimension of the convex reference set, $n$ is the sample size, and $\delta$ is the confidence level. Our result is based on a unified geometric assumption on the gradient of losses and the notion of local norms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.