Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Density Ratio Estimation and Neyman Pearson Classification with Missing Data (2302.10655v1)

Published 21 Feb 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Density Ratio Estimation (DRE) is an important machine learning technique with many downstream applications. We consider the challenge of DRE with missing not at random (MNAR) data. In this setting, we show that using standard DRE methods leads to biased results while our proposal (M-KLIEP), an adaptation of the popular DRE procedure KLIEP, restores consistency. Moreover, we provide finite sample estimation error bounds for M-KLIEP, which demonstrate minimax optimality with respect to both sample size and worst-case missingness. We then adapt an important downstream application of DRE, Neyman-Pearson (NP) classification, to this MNAR setting. Our procedure both controls Type I error and achieves high power, with high probability. Finally, we demonstrate promising empirical performance both synthetic data and real-world data with simulated missingness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube