Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and Camera Fusion (2302.10511v1)

Published 21 Feb 2023 in cs.CV

Abstract: Multi-view radar-camera fused 3D object detection provides a farther detection range and more helpful features for autonomous driving, especially under adverse weather. The current radar-camera fusion methods deliver kinds of designs to fuse radar information with camera data. However, these fusion approaches usually adopt the straightforward concatenation operation between multi-modal features, which ignores the semantic alignment with radar features and sufficient correlations across modals. In this paper, we present MVFusion, a novel Multi-View radar-camera Fusion method to achieve semantic-aligned radar features and enhance the cross-modal information interaction. To achieve so, we inject the semantic alignment into the radar features via the semantic-aligned radar encoder (SARE) to produce image-guided radar features. Then, we propose the radar-guided fusion transformer (RGFT) to fuse our radar and image features to strengthen the two modals' correlation from the global scope via the cross-attention mechanism. Extensive experiments show that MVFusion achieves state-of-the-art performance (51.7% NDS and 45.3% mAP) on the nuScenes dataset. We shall release our code and trained networks upon publication.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.