Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The Role of Masking for Efficient Supervised Knowledge Distillation of Vision Transformers (2302.10494v4)

Published 21 Feb 2023 in cs.LG and cs.CV

Abstract: Knowledge distillation is an effective method for training lightweight vision models. However, acquiring teacher supervision for training samples is often costly, especially from large-scale models like vision transformers (ViTs). In this paper, we develop a simple framework to reduce the supervision cost of ViT distillation: masking out a fraction of input tokens given to the teacher. By masking input tokens, one can skip the computations associated with the masked tokens without requiring any change to teacher parameters or architecture. We find that masking patches with the lowest student attention scores is highly effective, saving up to 50% of teacher FLOPs without any drop in student accuracy, while other masking criterion leads to suboptimal efficiency gains. Through in-depth analyses, we reveal that the student-guided masking provides a good curriculum to the student, making teacher supervision easier to follow during the early stage and challenging in the later stage.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.