Emergent Mind

Abstract

Physics-informed deep learning have recently emerged as an effective tool for leveraging both observational data and available physical laws. Physics-informed neural networks (PINNs) and deep operator networks (DeepONets) are two such models. The former encodes the physical laws via the automatic differentiation, while the latter learns the hidden physics from data. Generally, the noisy and limited observational data as well as the overparameterization in neural networks (NNs) result in uncertainty in predictions from deep learning models. In [1], a Bayesian framework based on the {{Generative Adversarial Networks}} (GAN) has been proposed as a unified model to quantify uncertainties in predictions of PINNs as well as DeepONets. Specifically, the proposed approach in [1] has two stages: (1) prior learning, and (2) posterior estimation. At the first stage, the GANs are employed to learn a functional prior either from a prescribed function distribution, e.g., Gaussian process, or from historical data and available physics. At the second stage, the Hamiltonian Monte Carlo (HMC) method is utilized to estimate the posterior in the latent space of GANs. However, the vanilla HMC does not support the mini-batch training, which limits its applications in problems with big data. In the present work, we propose to use the normalizing flow (NF) models in the context of variational inference, which naturally enables the minibatch training, as the alternative to HMC for posterior estimation in the latent space of GANs. A series of numerical experiments, including a nonlinear differential equation problem and a 100-dimensional Darcy problem, are conducted to demonstrate that NF with full-/mini-batch training are able to achieve similar accuracy as the ``gold rule'' HMC.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.