Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Variational inference in neural functional prior using normalizing flows: Application to differential equation and operator learning problems (2302.10448v1)

Published 21 Feb 2023 in math.NA, cs.NA, and physics.comp-ph

Abstract: Physics-informed deep learning have recently emerged as an effective tool for leveraging both observational data and available physical laws. Physics-informed neural networks (PINNs) and deep operator networks (DeepONets) are two such models. The former encodes the physical laws via the automatic differentiation, while the latter learns the hidden physics from data. Generally, the noisy and limited observational data as well as the overparameterization in neural networks (NNs) result in uncertainty in predictions from deep learning models. In [1], a Bayesian framework based on the {{Generative Adversarial Networks}} (GAN) has been proposed as a unified model to quantify uncertainties in predictions of PINNs as well as DeepONets. Specifically, the proposed approach in [1] has two stages: (1) prior learning, and (2) posterior estimation. At the first stage, the GANs are employed to learn a functional prior either from a prescribed function distribution, e.g., Gaussian process, or from historical data and available physics. At the second stage, the Hamiltonian Monte Carlo (HMC) method is utilized to estimate the posterior in the latent space of GANs. However, the vanilla HMC does not support the mini-batch training, which limits its applications in problems with big data. In the present work, we propose to use the normalizing flow (NF) models in the context of variational inference, which naturally enables the minibatch training, as the alternative to HMC for posterior estimation in the latent space of GANs. A series of numerical experiments, including a nonlinear differential equation problem and a 100-dimensional Darcy problem, are conducted to demonstrate that NF with full-/mini-batch training are able to achieve similar accuracy as the ``gold rule'' HMC.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.