Papers
Topics
Authors
Recent
2000 character limit reached

Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning Approach for Dynamic Treatment Regimes

Published 21 Feb 2023 in cs.LG and cs.AI | (2302.10434v2)

Abstract: In recent years, large amounts of electronic health records (EHRs) concerning chronic diseases have been collected to facilitate medical diagnosis. Modeling the dynamic properties of EHRs related to chronic diseases can be efficiently done using dynamic treatment regimes (DTRs). While reinforcement learning (RL) is a widely used method for creating DTRs, there is ongoing research in developing RL algorithms that can effectively handle large amounts of data. In this paper, we present a scalable kernel-based distributed Q-learning algorithm for generating DTRs. We perform both theoretical assessments and numerical analysis for the proposed approach. The results demonstrate that our algorithm significantly reduces the computational complexity associated with the state-of-the-art deep reinforcement learning methods, while maintaining comparable generalization performance in terms of accumulated rewards across stages, such as survival time or cumulative survival probability.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.