Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

pykanto: a python library to accelerate research on wild bird song (2302.10340v1)

Published 20 Feb 2023 in cs.SD, eess.AS, q-bio.PE, and q-bio.QM

Abstract: Studying the vocalisations of wild animals can be a challenge due to the limitations of traditional computational methods, which often are time-consuming and lack reproducibility. Here, I present pykanto, a new software package that provides a set of tools to build, manage, and explore large sound databases. It can automatically find discrete units in animal vocalisations, perform semi-supervised labelling of individual repertoires with a new interactive web app, and feed data to deep learning models to study things like individual signatures and acoustic similarity between individuals and populations. To demonstrate its capabilities, I put the library to the test on the vocalisations of male great tits in Wytham Woods, near Oxford, UK. The results show that the identities of individual birds can be accurately determined from their songs and that the use of pykanto improves the efficiency and reproducibility of the process.

Citations (7)

Summary

We haven't generated a summary for this paper yet.