LiT Tuned Models for Efficient Species Detection (2302.10281v1)
Abstract: Recent advances in training vision-LLMs have demonstrated unprecedented robustness and transfer learning effectiveness; however, standard computer vision datasets are image-only, and therefore not well adapted to such training methods. Our paper introduces a simple methodology for adapting any fine-grained image classification dataset for distributed vision-language pretraining. We implement this methodology on the challenging iNaturalist-2021 dataset, comprised of approximately 2.7 million images of macro-organisms across 10,000 classes, and achieve a new state-of-the art model in terms of zero-shot classification accuracy. Somewhat surprisingly, our model (trained using a new method called locked-image text tuning) uses a pre-trained, frozen vision representation, proving that language alignment alone can attain strong transfer learning performance, even on fractious, long-tailed datasets. Our approach opens the door for utilizing high quality vision-language pretrained models in agriculturally relevant applications involving species detection.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.