Papers
Topics
Authors
Recent
2000 character limit reached

Image Reconstruction via Deep Image Prior Subspaces (2302.10279v2)

Published 20 Feb 2023 in cs.CV and eess.IV

Abstract: Deep learning has been widely used for solving image reconstruction tasks but its deployability has been held back due to the shortage of high-quality training data. Unsupervised learning methods, such as the deep image prior (DIP), naturally fill this gap, but bring a host of new issues: the susceptibility to overfitting due to a lack of robust early stopping strategies and unstable convergence. We present a novel approach to tackle these issues by restricting DIP optimisation to a sparse linear subspace of its parameters, employing a synergy of dimensionality reduction techniques and second order optimisation methods. The low-dimensionality of the subspace reduces DIP's tendency to fit noise and allows the use of stable second order optimisation methods, e.g., natural gradient descent or L-BFGS. Experiments across both image restoration and tomographic tasks of different geometry and ill-posedness show that second order optimisation within a low-dimensional subspace is favourable in terms of optimisation stability to reconstruction fidelity trade-off.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.