Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse PCA Beyond Covariance Thresholding (2302.10158v2)

Published 20 Feb 2023 in cs.LG and stat.ML

Abstract: In the Wishart model for sparse PCA we are given $n$ samples $Y_1,\ldots, Y_n$ drawn independently from a $d$-dimensional Gaussian distribution $N({0, Id + \beta vv\top})$, where $\beta > 0$ and $v\in \mathbb{R}d$ is a $k$-sparse unit vector, and we wish to recover $v$ (up to sign). We show that if $n \ge \Omega(d)$, then for every $t \ll k$ there exists an algorithm running in time $n\cdot d{O(t)}$ that solves this problem as long as [ \beta \gtrsim \frac{k}{\sqrt{nt}}\sqrt{\ln({2 + td/k2})}\,. ] Prior to this work, the best polynomial time algorithm in the regime $k\approx \sqrt{d}$, called \emph{Covariance Thresholding} (proposed in [KNV15a] and analyzed in [DM14]), required $\beta \gtrsim \frac{k}{\sqrt{n}}\sqrt{\ln({2 + d/k2})}$. For large enough constant $t$ our algorithm runs in polynomial time and has better guarantees than Covariance Thresholding. Previously known algorithms with such guarantees required quasi-polynomial time $d{O(\log d)}$. In addition, we show that our techniques work with sparse PCA with adversarial perturbations studied in [dKNS20]. This model generalizes not only sparse PCA, but also other problems studied in prior works, including the sparse planted vector problem. As a consequence, we provide polynomial time algorithms for the sparse planted vector problem that have better guarantees than the state of the art in some regimes. Our approach also works with the Wigner model for sparse PCA. Moreover, we show that it is possible to combine our techniques with recent results on sparse PCA with symmetric heavy-tailed noise [dNNS22]. In particular, in the regime $k \approx \sqrt{d}$ we get the first polynomial time algorithm that works with symmetric heavy-tailed noise, while the algorithm from [dNNS22]. requires quasi-polynomial time in these settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.