Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bilevel learning of regularization models and their discretization for image deblurring and super-resolution (2302.10056v2)

Published 20 Feb 2023 in math.NA, cs.NA, and math.OC

Abstract: Bilevel learning is a powerful optimization technique that has extensively been employed in recent years to bridge the world of model-driven variational approaches with data-driven methods. Upon suitable parametrization of the desired quantities of interest (e.g., regularization terms or discretization filters), such approach computes optimal parameter values by solving a nested optimization problem where the variational model acts as a constraint. In this work, we consider two different use cases of bilevel learning for the problem of image restoration. First, we focus on learning scalar weights and convolutional filters defining a Field of Experts regularizer to restore natural images degraded by blur and noise. For improving the practical performance, the lower-level problem is solved by means of a gradient descent scheme combined with a line-search strategy based on the Barzilai-Borwein rule. As a second application, the bilevel setup is employed for learning a discretization of the popular total variation regularizer for solving image restoration problems (in particular, deblurring and super-resolution). Numerical results show the effectiveness of the approach and their generalization to multiple tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.