Papers
Topics
Authors
Recent
2000 character limit reached

Discouraging posterior collapse in hierarchical Variational Autoencoders using context (2302.09976v2)

Published 20 Feb 2023 in cs.LG and cs.CV

Abstract: Hierarchical Variational Autoencoders (VAEs) are among the most popular likelihood-based generative models. There is a consensus that the top-down hierarchical VAEs allow effective learning of deep latent structures and avoid problems like posterior collapse. Here, we show that this is not necessarily the case, and the problem of collapsing posteriors remains. To discourage this issue, we propose a deep hierarchical VAE with a context on top. Specifically, we use a Discrete Cosine Transform to obtain the last latent variable. In a series of experiments, we observe that the proposed modification allows us to achieve better utilization of the latent space and does not harm the model's generative abilities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.