Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised OmniMVS: Efficient Omnidirectional Depth Inference via Establishing Pseudo-Stereo Supervision (2302.09922v2)

Published 20 Feb 2023 in cs.CV

Abstract: Omnidirectional multi-view stereo (MVS) vision is attractive for its ultra-wide field-of-view (FoV), enabling machines to perceive 360{\deg} 3D surroundings. However, the existing solutions require expensive dense depth labels for supervision, making them impractical in real-world applications. In this paper, we propose the first unsupervised omnidirectional MVS framework based on multiple fisheye images. To this end, we project all images to a virtual view center and composite two panoramic images with spherical geometry from two pairs of back-to-back fisheye images. The two 360{\deg} images formulate a stereo pair with a special pose, and the photometric consistency is leveraged to establish the unsupervised constraint, which we term "Pseudo-Stereo Supervision". In addition, we propose Un-OmniMVS, an efficient unsupervised omnidirectional MVS network, to facilitate the inference speed with two efficient components. First, a novel feature extractor with frequency attention is proposed to simultaneously capture the non-local Fourier features and local spatial features, explicitly facilitating the feature representation. Then, a variance-based light cost volume is put forward to reduce the computational complexity. Experiments exhibit that the performance of our unsupervised solution is competitive to that of the state-of-the-art (SoTA) supervised methods with better generalization in real-world data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube