Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ByzSecAgg: A Byzantine-Resistant Secure Aggregation Scheme for Federated Learning Based on Coded Computing and Vector Commitment (2302.09913v4)

Published 20 Feb 2023 in cs.CR, cs.DC, cs.IT, cs.LG, and math.IT

Abstract: In this paper, we propose ByzSecAgg, an efficient secure aggregation scheme for federated learning that is resistant to Byzantine attacks and privacy leakages. Processing individual updates to manage adversarial behavior, while preserving the privacy of the data against colluding nodes, requires some sort of secure secret sharing. However, the communication load for secret sharing of long vectors of updates can be very high. In federated settings, where users are often edge devices with potential bandwidth constraints, excessive communication overhead is undesirable. ByzSecAgg solves this problem by partitioning local updates into smaller sub-vectors and sharing them using ramp secret sharing. However, this sharing method does not admit bilinear computations, such as pairwise distances calculations, which are needed for distance-based outlier-detection algorithms, and effective methods for mitigating Byzantine attacks. To overcome this issue, each user runs another round of ramp sharing, with a different embedding of the data in the sharing polynomial. This technique, motivated by ideas from coded computing, enables secure computation of pairwise distance. In addition, to maintain the integrity and privacy of the local update, ByzSecAgg also uses a vector commitment method, in which the commitment size remains constant (i.e., does not increase with the length of the local update), while simultaneously allowing verification of the secret sharing process. In terms of communication load, ByzSecAgg significantly outperforms the related baseline scheme, known as BREA.

Citations (1)

Summary

We haven't generated a summary for this paper yet.