Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Demonstration-Guided Reinforcement Learning with Efficient Exploration for Task Automation of Surgical Robot (2302.09772v1)

Published 20 Feb 2023 in cs.RO, cs.AI, and cs.LG

Abstract: Task automation of surgical robot has the potentials to improve surgical efficiency. Recent reinforcement learning (RL) based approaches provide scalable solutions to surgical automation, but typically require extensive data collection to solve a task if no prior knowledge is given. This issue is known as the exploration challenge, which can be alleviated by providing expert demonstrations to an RL agent. Yet, how to make effective use of demonstration data to improve exploration efficiency still remains an open challenge. In this work, we introduce Demonstration-guided EXploration (DEX), an efficient reinforcement learning algorithm that aims to overcome the exploration problem with expert demonstrations for surgical automation. To effectively exploit demonstrations, our method estimates expert-like behaviors with higher values to facilitate productive interactions, and adopts non-parametric regression to enable such guidance at states unobserved in demonstration data. Extensive experiments on $10$ surgical manipulation tasks from SurRoL, a comprehensive surgical simulation platform, demonstrate significant improvements in the exploration efficiency and task success rates of our method. Moreover, we also deploy the learned policies to the da Vinci Research Kit (dVRK) platform to show the effectiveness on the real robot. Code is available at https://github.com/med-air/DEX.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.