Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Credal Bayesian Deep Learning (2302.09656v5)

Published 19 Feb 2023 in cs.LG and stat.ML

Abstract: Uncertainty quantification and robustness to distribution shifts are important goals in machine learning and artificial intelligence. Although Bayesian Neural Networks (BNNs) allow for uncertainty in the predictions to be assessed, different sources of predictive uncertainty cannot be distinguished properly. We present Credal Bayesian Deep Learning (CBDL). Heuristically, CBDL allows to train an (uncountably) infinite ensemble of BNNs, using only finitely many elements. This is possible thanks to prior and likelihood finitely generated credal sets (FGCSs), a concept from the imprecise probability literature. Intuitively, convex combinations of a finite collection of prior-likelihood pairs are able to represent infinitely many such pairs. After training, CBDL outputs a set of posteriors on the parameters of the neural network. At inference time, such posterior set is used to derive a set of predictive distributions that is in turn utilized to distinguish between (predictive) aleatoric and epistemic uncertainties, and to quantify them. The predictive set also produces either (i) a collection of outputs enjoying desirable probabilistic guarantees, or (ii) the single output that is deemed the best, that is, the one having the highest predictive lower probability -- another imprecise-probabilistic concept. CBDL is more robust than single BNNs to prior and likelihood misspecification, and to distribution shift. We show that CBDL is better at quantifying and disentangling different types of (predictive) uncertainties than single BNNs and ensemble of BNNs. In addition, we apply CBDL to two case studies to demonstrate its downstream tasks capabilities: one, for motion prediction in autonomous driving scenarios, and two, to model blood glucose and insulin dynamics for artificial pancreas control. We show that CBDL performs better when compared to an ensemble of BNNs baseline.

Citations (11)

Summary

We haven't generated a summary for this paper yet.