Papers
Topics
Authors
Recent
2000 character limit reached

Designing a 3D-Aware StyleNeRF Encoder for Face Editing (2302.09467v1)

Published 19 Feb 2023 in cs.CV

Abstract: GAN inversion has been exploited in many face manipulation tasks, but 2D GANs often fail to generate multi-view 3D consistent images. The encoders designed for 2D GANs are not able to provide sufficient 3D information for the inversion and editing. Therefore, 3D-aware GAN inversion is proposed to increase the 3D editing capability of GANs. However, the 3D-aware GAN inversion remains under-explored. To tackle this problem, we propose a 3D-aware (3Da) encoder for GAN inversion and face editing based on the powerful StyleNeRF model. Our proposed 3Da encoder combines a parametric 3D face model with a learnable detail representation model to generate geometry, texture and view direction codes. For more flexible face manipulation, we then design a dual-branch StyleFlow module to transfer the StyleNeRF codes with disentangled geometry and texture flows. Extensive experiments demonstrate that we realize 3D consistent face manipulation in both facial attribute editing and texture transfer. Furthermore, for video editing, we make the sequence of frame codes share a common canonical manifold, which improves the temporal consistency of the edited attributes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.