Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

mBEST: Realtime Deformable Linear Object Detection Through Minimal Bending Energy Skeleton Pixel Traversals (2302.09444v5)

Published 18 Feb 2023 in cs.RO

Abstract: Robotic manipulation of deformable materials is a challenging task that often requires realtime visual feedback. This is especially true for deformable linear objects (DLOs) or "rods", whose slender and flexible structures make proper tracking and detection nontrivial. To address this challenge, we present mBEST, a robust algorithm for the realtime detection of DLOs that is capable of producing an ordered pixel sequence of each DLO's centerline along with segmentation masks. Our algorithm obtains a binary mask of the DLOs and then thins it to produce a skeleton pixel representation. After refining the skeleton to ensure topological correctness, the pixels are traversed to generate paths along each unique DLO. At the core of our algorithm, we postulate that intersections can be robustly handled by choosing the combination of paths that minimizes the cumulative bending energy of the DLO(s). We show that this simple and intuitive formulation outperforms the state-of-the-art methods for detecting DLOs with large numbers of sporadic crossings ranging from curvatures with high variance to nearly-parallel configurations. Furthermore, our method achieves a significant performance improvement of approximately 50% faster runtime and better scaling over the state of the art.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey,” The International Journal of Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.
  2. J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and P. Abbeel, “A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4111–4117, IEEE, 2013.
  3. H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and J. Schmidhuber, “A system for robotic heart surgery that learns to tie knots using recurrent neural networks,” Advanced Robotics, vol. 22, no. 13-14, pp. 1521–1537, 2008.
  4. A. Choi, D. Tong, M. K. Jawed, and J. Joo, “Implicit contact model for discrete elastic rods in knot tying,” Journal of Applied Mechanics, vol. 88, no. 5, 2021.
  5. J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini, “Dual-arm robotic manipulation of flexible cables,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 479–484, IEEE, 2018.
  6. M. Yu, H. Zhong, and X. Li, “Shape control of deformable linear objects with offline and online learning of local linear deformation models,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 1337–1343, IEEE, 2022.
  7. J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Science and Technology, vol. 37, pp. 159–165, 2017.
  8. D. Tong, A. Borum, and M. K. Jawed, “Automated stability testing of elastic rods with helical centerlines using a robotic system,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1126–1133, 2021.
  9. B. Audoly, N. Clauvelin, and S. Neukirch, “Elastic knots,” Physical Review Letters, vol. 99, no. 16, p. 164301, 2007.
  10. M. K. Jawed, P. Dieleman, B. Audoly, and P. M. Reis, “Untangling the mechanics and topology in the frictional response of long overhand elastic knots,” Physical Review Letters, vol. 115, no. 11, p. 118302, 2015.
  11. V. P. Patil, J. D. Sandt, M. Kolle, and J. Dunkel, “Topological mechanics of knots and tangles,” Science, vol. 367, no. 6473, pp. 71–75, 2020.
  12. P. Johanns, P. Grandgeorge, C. Baek, T. G. Sano, J. H. Maddocks, and P. M. Reis, “The shapes of physical trefoil knots,” Extreme Mechanics Letters, vol. 43, p. 101172, 2021.
  13. T. G. Sano, P. Johanns, P. Grandgeorge, C. Baek, and P. M. Reis, “Exploring the inner workings of the clove hitch knot,” Extreme Mechanics Letters, p. 101788, 2022.
  14. A. Caporali, K. Galassi, R. Zanella, and G. Palli, “FASTDLO: Fast deformable linear objects instance segmentation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9075–9082, 2022.
  15. A. Keipour, M. Bandari, and S. Schaal, “Deformable one-dimensional object detection for routing and manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4329–4336, 2022.
  16. M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state estimation for manipulating deformable linear objects,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2372–2379, 2020.
  17. D. De Gregorio, G. Palli, and L. Di Stefano, “Let’s take a walk on superpixels graphs: Deformable linear objects segmentation and model estimation,” arXiv preprint arXiv:1810.04461, 2018.
  18. D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmentation,” in IEEE/CVF International Conference on Computer Vision, pp. 9157–9166, 2019.
  19. D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact++: Better real-time instance segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2, pp. 1108–1121, 2020.
  20. H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “Blendmask: Top-down meets bottom-up for instance segmentation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8573–8581, 2020.
  21. Z. Tian, C. Shen, and H. Chen, “Conditional convolutions for instance segmentation,” in European Conference on Computer Vision, pp. 282–298, Springer, 2020.
  22. M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir, M. Elbadrawy, A. Lodhi, and H. Katam, “BlenderProc,” arXiv preprint arXiv:1911.01911, 2019.
  23. W. Qiu and A. Yuille, “UnrealCV: Connecting computer vision to unreal engine,” in European Conference on Computer Vision, pp. 909–916, Springer, 2016.
  24. A. Caporali, M. Pantano, L. Janisch, D. Regulin, G. Palli, and D. Lee, “A weakly supervised semi-automatic image labeling approach for deformable linear objects,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 1013–1020, 2023.
  25. R. Zanella, A. Caporali, K. Tadaka, D. De Gregorio, and G. Palli, “Auto-generated wires dataset for semantic segmentation with domain-independence,” in International Conference on Computer, Control and Robotics (ICCCR), pp. 292–298, IEEE, 2021.
  26. A. Caporali, R. Zanella, D. D. Greogrio, and G. Palli, “Ariadne+: Deep learning–based augmented framework for the instance segmentation of wires,” IEEE Transactions on Industrial Informatics, vol. 18, no. 12, pp. 8607–8617, 2022.
  27. A. Caporali, K. Galassi, B. L. Žagar, R. Zanella, G. Palli, and A. C. Knoll, “Rt-dlo: Real-time deformable linear objects instance segmentation,” IEEE Transactions on Industrial Informatics, pp. 1–10, 2023.
  28. T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Communications of the ACM, vol. 27, no. 3, p. 236–239, 1984.
  29. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in International Conference on Knowledge Discovery and Data Mining, pp. 226–231, 1996.
  30. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, “Discrete elastic rods,” in ACM SIGGRAPH ’08 Conference, pp. 63:1–12, 2008.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Andrew Choi (9 papers)
  2. Dezhong Tong (10 papers)
  3. Brian Park (4 papers)
  4. Demetri Terzopoulos (44 papers)
  5. Jungseock Joo (21 papers)
  6. Mohammad Khalid Jawed (12 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com