Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using Protagonist's Mental Representations (2302.09418v1)

Published 18 Feb 2023 in cs.CL and cs.AI

Abstract: Narrative is a ubiquitous component of human communication. Understanding its structure plays a critical role in a wide variety of applications, ranging from simple comparative analyses to enhanced narrative retrieval, comprehension, or reasoning capabilities. Prior research in narratology has highlighted the importance of studying the links between cognitive and linguistic aspects of narratives for effective comprehension. This interdependence is related to the textual semantics and mental language in narratives, referring to characters' motivations, feelings or emotions, and beliefs. However, this interdependence is hardly explored for modeling narratives. In this work, we propose the task of automatically detecting prominent elements of the narrative structure by analyzing the role of characters' inferred mental state along with linguistic information at the syntactic and semantic levels. We introduce a STORIES dataset of short personal narratives containing manual annotations of key elements of narrative structure, specifically climax and resolution. To this end, we implement a computational model that leverages the protagonist's mental state information obtained from a pre-trained model trained on social commonsense knowledge and integrates their representations with contextual semantic embed-dings using a multi-feature fusion approach. Evaluating against prior zero-shot and supervised baselines, we find that our model is able to achieve significant improvements in the task of identifying climax and resolution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.