Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning with Impartiality to Walk on the Pareto Frontier of Fairness, Privacy, and Utility (2302.09183v1)

Published 17 Feb 2023 in cs.LG, cs.AI, and cs.CY

Abstract: Deploying ML models often requires both fairness and privacy guarantees. Both of these objectives present unique trade-offs with the utility (e.g., accuracy) of the model. However, the mutual interactions between fairness, privacy, and utility are less well-understood. As a result, often only one objective is optimized, while the others are tuned as hyper-parameters. Because they implicitly prioritize certain objectives, such designs bias the model in pernicious, undetectable ways. To address this, we adopt impartiality as a principle: design of ML pipelines should not favor one objective over another. We propose impartially-specified models, which provide us with accurate Pareto frontiers that show the inherent trade-offs between the objectives. Extending two canonical ML frameworks for privacy-preserving learning, we provide two methods (FairDP-SGD and FairPATE) to train impartially-specified models and recover the Pareto frontier. Through theoretical privacy analysis and a comprehensive empirical study, we provide an answer to the question of where fairness mitigation should be integrated within a privacy-aware ML pipeline.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.