Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning for Cutting Planes in Integer Programming: A Survey (2302.09166v2)

Published 17 Feb 2023 in math.OC, cs.AI, and cs.LG

Abstract: We survey recent work on ML techniques for selecting cutting planes (or cuts) in mixed-integer linear programming (MILP). Despite the availability of various classes of cuts, the task of choosing a set of cuts to add to the linear programming (LP) relaxation at a given node of the branch-and-bound (B&B) tree has defied both formal and heuristic solutions to date. ML offers a promising approach for improving the cut selection process by using data to identify promising cuts that accelerate the solution of MILP instances. This paper presents an overview of the topic, highlighting recent advances in the literature, common approaches to data collection, evaluation, and ML model architectures. We analyze the empirical results in the literature in an attempt to quantify the progress that has been made and conclude by suggesting avenues for future research.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.