Papers
Topics
Authors
Recent
2000 character limit reached

Learning from Label Proportion with Online Pseudo-Label Decision by Regret Minimization (2302.08947v1)

Published 17 Feb 2023 in cs.CV

Abstract: This paper proposes a novel and efficient method for Learning from Label Proportions (LLP), whose goal is to train a classifier only by using the class label proportions of instance sets, called bags. We propose a novel LLP method based on an online pseudo-labeling method with regret minimization. As opposed to the previous LLP methods, the proposed method effectively works even if the bag sizes are large. We demonstrate the effectiveness of the proposed method using some benchmark datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.