Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Contrastive Distillation with Adaptive Denoising (2302.08764v2)

Published 17 Feb 2023 in cs.CV

Abstract: Adversarial Robustness Distillation (ARD) is a novel method to boost the robustness of small models. Unlike general adversarial training, its robust knowledge transfer can be less easily restricted by the model capacity. However, the teacher model that provides the robustness of knowledge does not always make correct predictions, interfering with the student's robust performances. Besides, in the previous ARD methods, the robustness comes entirely from one-to-one imitation, ignoring the relationship between examples. To this end, we propose a novel structured ARD method called Contrastive Relationship DeNoise Distillation (CRDND). We design an adaptive compensation module to model the instability of the teacher. Moreover, we utilize the contrastive relationship to explore implicit robustness knowledge among multiple examples. Experimental results on multiple attack benchmarks show CRDND can transfer robust knowledge efficiently and achieves state-of-the-art performances.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.