Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Random Padding Data Augmentation (2302.08682v1)

Published 17 Feb 2023 in cs.CV

Abstract: The convolutional neural network (CNN) learns the same object in different positions in images, which can improve the recognition accuracy of the model. An implication of this is that CNN may know where the object is. The usefulness of the features' spatial information in CNNs has not been well investigated. In this paper, we found that the model's learning of features' position information hindered the learning of the features' relationship. Therefore, we introduced Random Padding, a new type of padding method for training CNNs that impairs the architecture's capacity to learn position information by adding zero-padding randomly to half of the border of feature maps. Random Padding is parameter-free, simple to construct, and compatible with the majority of CNN-based recognition models. This technique is also complementary to data augmentations such as random cropping, rotation, flipping and erasing, and consistently improves the performance of image classification over strong baselines.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.