Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

High-frequency Matters: An Overwriting Attack and defense for Image-processing Neural Network Watermarking (2302.08637v1)

Published 17 Feb 2023 in cs.CR

Abstract: In recent years, there has been significant advancement in the field of model watermarking techniques. However, the protection of image-processing neural networks remains a challenge, with only a limited number of methods being developed. The objective of these techniques is to embed a watermark in the output images of the target generative network, so that the watermark signal can be detected in the output of a surrogate model obtained through model extraction attacks. This promising technique, however, has certain limits. Analysis of the frequency domain reveals that the watermark signal is mainly concealed in the high-frequency components of the output. Thus, we propose an overwriting attack that involves forging another watermark in the output of the generative network. The experimental results demonstrate the efficacy of this attack in sabotaging existing watermarking schemes for image-processing networks, with an almost 100% success rate. To counter this attack, we devise an adversarial framework for the watermarking network. The framework incorporates a specially designed adversarial training step, where the watermarking network is trained to defend against the overwriting network, thereby enhancing its robustness. Additionally, we observe an overfitting phenomenon in the existing watermarking method, which can render it ineffective. To address this issue, we modify the training process to eliminate the overfitting problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.