Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Distances for Markov Chains, and Their Differentiation (2302.08621v2)

Published 16 Feb 2023 in cs.LG

Abstract: (Directed) graphs with node attributes are a common type of data in various applications and there is a vast literature on developing metrics and efficient algorithms for comparing them. Recently, in the graph learning and optimization communities, a range of new approaches have been developed for comparing graphs with node attributes, leveraging ideas such as the Optimal Transport (OT) and the Weisfeiler-Lehman (WL) graph isomorphism test. Two state-of-the-art representatives are the OTC distance proposed in (O'Connor et al., 2022) and the WL distance in (Chen et al., 2022). Interestingly, while these two distances are developed based on different ideas, we observe that they both view graphs as Markov chains, and are deeply connected. Indeed, in this paper, we propose a unified framework to generate distances for Markov chains (thus including (directed) graphs with node attributes), which we call the Optimal Transport Markov (OTM) distances, that encompass both the OTC and the WL distances. We further introduce a special one-parameter family of distances within our OTM framework, called the discounted WL distance. We show that the discounted WL distance has nice theoretical properties and can address several limitations of the existing OTC and WL distances. Furthermore, contrary to the OTC and the WL distances, our new discounted WL distance can be differentiated after a entropy-regularization similar to the Sinkhorn distance, making it suitable to use in learning frameworks, e.g., as the reconstruction loss in a graph generative model.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube