Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Chebyshev distances associated to the second members of systems of Max-product/Lukasiewicz Fuzzy relational equations (2302.08554v1)

Published 30 Jan 2023 in cs.AI, cs.LO, and math.LO

Abstract: In this article, we study the inconsistency of a system of $\max$-product fuzzy relational equations and of a system of $\max$-Lukasiewicz fuzzy relational equations. For a system of $\max-\min$ fuzzy relational equations $A \Box_{\min}{\max} x = b$ and using the $L_\infty$ norm, (Baaj, 2023) showed that the Chebyshev distance $\Delta = \inf_{c \in \mathcal{C}} \Vert b - c \Vert$, where $\mathcal{C}$ is the set of second members of consistent systems defined with the same matrix $A$, can be computed by an explicit analytical formula according to the components of the matrix $A$ and its second member $b$. In this article, we give analytical formulas analogous to that of (Baaj, 2023) to compute the Chebyshev distance associated to the second member of a system of $\max$-product fuzzy relational equations and that associated to the second member of a system of $\max$-Lukasiewicz fuzzy relational equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)