Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental $(1-ε)$-approximate dynamic matching in $O(poly(1/ε))$ update time (2302.08432v2)

Published 16 Feb 2023 in cs.DS

Abstract: In the dynamic approximate maximum bipartite matching problem we are given bipartite graph $G$ undergoing updates and our goal is to maintain a matching of $G$ which is large compared the maximum matching size $\mu(G)$. We define a dynamic matching algorithm to be $\alpha$ (respectively $(\alpha, \beta)$)-approximate if it maintains matching $M$ such that at all times $|M | \geq \mu(G) \cdot \alpha$ (respectively $|M| \geq \mu(G) \cdot \alpha - \beta$). We present the first deterministic $(1-\epsilon )$-approximate dynamic matching algorithm with $O(poly(\epsilon {-1}))$ amortized update time for graphs undergoing edge insertions. Previous solutions either required super-constant [Gupta FSTTCS'14, Bhattacharya-Kiss-Saranurak SODA'23] or exponential in $1/\epsilon $ [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA'19] update time. Our implementation is arguably simpler than the mentioned algorithms and its description is self contained. Moreover, we show that if we allow for additive $(1, \epsilon \cdot n)$-approximation our algorithm seamlessly extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one of the few small update time algorithms for $(1-\epsilon )$-approximate dynamic matching allowing for updates both increasing and decreasing the maximum matching size of $G$ in a fully dynamic manner.

Citations (1)

Summary

We haven't generated a summary for this paper yet.