Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Biased Consensus Dynamics on Regular Expander Graphs (2302.08344v1)

Published 16 Feb 2023 in math.PR and cs.DM

Abstract: Consensus protocols play an important role in the study of distributed algorithms. In this paper, we study the effect of bias on two popular consensus protocols, namely, the {\em voter rule} and the {\em 2-choices rule} with binary opinions. We assume that agents with opinion $1$ update their opinion with a probability $q_1$ strictly less than the probability $q_0$ with which update occurs for agents with opinion $0$. We call opinion $1$ as the superior opinion and our interest is to study the conditions under which the network reaches consensus on this opinion. We assume that the agents are located on the vertices of a regular expander graph with $n$ vertices. We show that for the voter rule, consensus is achieved on the superior opinion in $O(\log n)$ time with high probability even if system starts with only $\Omega(\log n)$ agents having the superior opinion. This is in sharp contrast to the classical voter rule where consensus is achieved in $O(n)$ time and the probability of achieving consensus on any particular opinion is directly proportional to the initial number of agents with that opinion. For the 2-choices rule, we show that consensus is achieved on the superior opinion in $O(\log n)$ time with high probability when the initial proportion of agents with the superior opinion is above a certain threshold. We explicitly characterise this threshold as a function of the strength of the bias and the spectral properties of the graph. We show that for the biased version of the 2-choice rule this threshold can be significantly less than that for the unbiased version of the same rule. Our techniques involve using sharp probabilistic bounds on the drift to characterise the Markovian dynamics of the system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.