Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NUAA-QMUL-AIIT at Memotion 3: Multi-modal Fusion with Squeeze-and-Excitation for Internet Meme Emotion Analysis (2302.08326v1)

Published 16 Feb 2023 in cs.CL

Abstract: This paper describes the participation of our NUAA-QMUL-AIIT team in the Memotion 3 shared task on meme emotion analysis. We propose a novel multi-modal fusion method, Squeeze-and-Excitation Fusion (SEFusion), and embed it into our system for emotion classification in memes. SEFusion is a simple fusion method that employs fully connected layers, reshaping, and matrix multiplication. SEFusion learns a weight for each modality and then applies it to its own modality feature. We evaluate the performance of our system on the three Memotion 3 sub-tasks. Among all participating systems in this Memotion 3 shared task, our system ranked first on task A, fifth on task B, and second on task C. Our proposed SEFusion provides the flexibility to fuse any features from different modalities. The source code for our method is published on https://github.com/xxxxxxxxy/memotion3-SEFusion.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.