Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the Effect of Adversarial Training Against Invariance-based Adversarial Examples (2302.08257v1)

Published 16 Feb 2023 in cs.LG and cs.AI

Abstract: Adversarial examples are carefully crafted attack points that are supposed to fool machine learning classifiers. In the last years, the field of adversarial machine learning, especially the study of perturbation-based adversarial examples, in which a perturbation that is not perceptible for humans is added to the images, has been studied extensively. Adversarial training can be used to achieve robustness against such inputs. Another type of adversarial examples are invariance-based adversarial examples, where the images are semantically modified such that the predicted class of the model does not change, but the class that is determined by humans does. How to ensure robustness against this type of adversarial examples has not been explored yet. This work addresses the impact of adversarial training with invariance-based adversarial examples on a convolutional neural network (CNN). We show that when adversarial training with invariance-based and perturbation-based adversarial examples is applied, it should be conducted simultaneously and not consecutively. This procedure can achieve relatively high robustness against both types of adversarial examples. Additionally, we find that the algorithm used for generating invariance-based adversarial examples in prior work does not correctly determine the labels and therefore we use human-determined labels.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.