Papers
Topics
Authors
Recent
2000 character limit reached

Dialogue State Distillation Network with Inter-slot Contrastive Learning for Dialogue State Tracking (2302.08220v2)

Published 16 Feb 2023 in cs.CL

Abstract: In task-oriented dialogue systems, Dialogue State Tracking (DST) aims to extract users' intentions from the dialogue history. Currently, most existing approaches suffer from error propagation and are unable to dynamically select relevant information when utilizing previous dialogue states. Moreover, the relations between the updates of different slots provide vital clues for DST. However, the existing approaches rely only on predefined graphs to indirectly capture the relations. In this paper, we propose a Dialogue State Distillation Network (DSDN) to utilize relevant information of previous dialogue states and migrate the gap of utilization between training and testing. Thus, it can dynamically exploit previous dialogue states and avoid introducing error propagation simultaneously. Further, we propose an inter-slot contrastive learning loss to effectively capture the slot co-update relations from dialogue context. Experiments are conducted on the widely used MultiWOZ 2.0 and MultiWOZ 2.1 datasets. The experimental results show that our proposed model achieves the state-of-the-art performance for DST.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.