Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fuzzy Knowledge Distillation from High-Order TSK to Low-Order TSK (2302.08038v1)

Published 16 Feb 2023 in cs.LG

Abstract: High-order Takagi-Sugeno-Kang (TSK) fuzzy classifiers possess powerful classification performance yet have fewer fuzzy rules, but always be impaired by its exponential growth training time and poorer interpretability owing to High-order polynomial used in consequent part of fuzzy rule, while Low-order TSK fuzzy classifiers run quickly with high interpretability, however they usually require more fuzzy rules and perform relatively not very well. Address this issue, a novel TSK fuzzy classifier embeded with knowledge distillation in deep learning called HTSK-LLM-DKD is proposed in this study. HTSK-LLM-DKD achieves the following distinctive characteristics: 1) It takes High-order TSK classifier as teacher model and Low-order TSK fuzzy classifier as student model, and leverages the proposed LLM-DKD (Least Learning Machine based Decoupling Knowledge Distillation) to distill the fuzzy dark knowledge from High-order TSK fuzzy classifier to Low-order TSK fuzzy classifier, which resulting in Low-order TSK fuzzy classifier endowed with enhanced performance surpassing or at least comparable to High-order TSK classifier, as well as high interpretability; specifically 2) The Negative Euclidean distance between the output of teacher model and each class is employed to obtain the teacher logits, and then it compute teacher/student soft labels by the softmax function with distillating temperature parameter; 3) By reformulating the Kullback-Leibler divergence, it decouples fuzzy dark knowledge into target class knowledge and non-target class knowledge, and transfers them to student model. The advantages of HTSK-LLM-DKD are verified on the benchmarking UCI datasets and a real dataset Cleveland heart disease, in terms of classification performance and model interpretability.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.