Papers
Topics
Authors
Recent
2000 character limit reached

Almost Sure Saddle Avoidance of Stochastic Gradient Methods without the Bounded Gradient Assumption (2302.07862v1)

Published 15 Feb 2023 in cs.LG and math.OC

Abstract: We prove that various stochastic gradient descent methods, including the stochastic gradient descent (SGD), stochastic heavy-ball (SHB), and stochastic Nesterov's accelerated gradient (SNAG) methods, almost surely avoid any strict saddle manifold. To the best of our knowledge, this is the first time such results are obtained for SHB and SNAG methods. Moreover, our analysis expands upon previous studies on SGD by removing the need for bounded gradients of the objective function and uniformly bounded noise. Instead, we introduce a more practical local boundedness assumption for the noisy gradient, which is naturally satisfied in empirical risk minimization problems typically seen in training of neural networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.