Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Consensus-based Networked Tracking in Presence of Heterogeneous Time-Delays (2302.07511v1)

Published 15 Feb 2023 in eess.SY, cs.SY, eess.SP, and math.DS

Abstract: We propose a distributed (single) target tracking scheme based on networked estimation and consensus algorithms over static sensor networks. The tracking part is based on linear time-difference-of-arrival (TDOA) measurement proposed in our previous works. This paper, in particular, develops delay-tolerant distributed filtering solutions over sparse data-transmission networks. We assume general arbitrary heterogeneous delays at different links. This may occur in many realistic large-scale applications where the data-sharing between different nodes is subject to latency due to communication-resource constraints or large spatially distributed sensor networks. The solution we propose in this work shows improved performance (verified by both theory and simulations) in such scenarios. Another privilege of such distributed schemes is the possibility to add localized fault-detection and isolation (FDI) strategies along with survivable graph-theoretic design, which opens many follow-up venues to this research. To our best knowledge no such delay-tolerant distributed linear algorithm is given in the existing distributed tracking literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.