Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Excess risk bound for deep learning under weak dependence (2302.07503v1)

Published 15 Feb 2023 in stat.ML and cs.LG

Abstract: This paper considers deep neural networks for learning weakly dependent processes in a general framework that includes, for instance, regression estimation, time series prediction, time series classification. The $\psi$-weak dependence structure considered is quite large and covers other conditions such as mixing, association,$\ldots$ Firstly, the approximation of smooth functions by deep neural networks with a broad class of activation functions is considered. We derive the required depth, width and sparsity of a deep neural network to approximate any H\"{o}lder smooth function, defined on any compact set $\mx$. Secondly, we establish a bound of the excess risk for the learning of weakly dependent observations by deep neural networks. When the target function is sufficiently smooth, this bound is close to the usual $\mathcal{O}(n{-1/2})$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.