Emergent Mind

Optimal Sample Complexity of Reinforcement Learning for Mixing Discounted Markov Decision Processes

(2302.07477)
Published Feb 15, 2023 in cs.LG , math.OC , and stat.ML

Abstract

We consider the optimal sample complexity theory of tabular reinforcement learning (RL) for maximizing the infinite horizon discounted reward in a Markov decision process (MDP). Optimal worst-case complexity results have been developed for tabular RL problems in this setting, leading to a sample complexity dependence on $\gamma$ and $\epsilon$ of the form $\tilde \Theta((1-\gamma){-3}\epsilon{-2})$, where $\gamma$ denotes the discount factor and $\epsilon$ is the solution error tolerance. However, in many applications of interest, the optimal policy (or all policies) induces mixing. We establish that in such settings, the optimal sample complexity dependence is $\tilde \Theta(t{\text{mix}}(1-\gamma){-2}\epsilon{-2})$, where $t{\text{mix}}$ is the total variation mixing time. Our analysis is grounded in regeneration-type ideas, which we believe are of independent interest, as they can be used to study RL problems for general state space MDPs.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.